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SUMMARY

The Mixed-Mode Bending (MMB) test uses a lever to simultaneously

apply mode Ι and mode ΙΙ loading to a split-beam specimen.  An iterative analysis

that accounts for the geometric nonlinearity of the MMB test was developed.  The

analysis accurately predicted the measured load-displacement response and the

strain energy release rate, G, of an MMB test specimen made of APC2

(AS4/PEEK).  The errors in G when calculated using linear theory were found to be

as large as 30% in some cases.  Because it would be inconvenient to use a

nonlinear analysis to analyze MMB data, the MMB apparatus was redesigned to

minimize the nonlinearity.  The nonlinear analysis was used as a guide in redesigning

the MMB apparatus.  With the redesigned apparatus, loads are applied through a

roller attached to the lever and loaded just above the midplane of the test specimen.

The redesigned MMB apparatus has geometric nonlinearity errors of less than 3%,

even for materials substantially tougher than APC2.  This apparatus was

demonstrated by measuring the mixed-mode delamination fracture toughness of

APC2.  The data from the redesigned MMB apparatus were analyzed with a linear

analysis which yielded results similar to those found with the original apparatus and

the nonlinear analysis.
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INTRODUCTION

Delamination continues to be one of the major problems limiting the use of

composite materials in primary structures.  A major step toward predicting

delamination is characterizing a material's delamination fracture toughness.

Delamination fracture toughness is often expressed in terms of the critical strain

energy release rate, Gc, corresponding to delamination growth.

Many tests have been used to measure fracture toughness.  The double

cantilever beam (DCB) test[1] is most often used to measure mode Ι (opening)

delamination fracture toughness.  The end-notched flexure (ENF) test[2] is most often

used to measure mode ΙΙ (sliding shear) delamination fracture toughness.  However,

delamination in structures is usually not a result of pure mode Ι or pure mode ΙΙ

loading, so it is important that the delamination fracture toughness be known for

mixed-mode loading.

Several tests have been used for measuring mixed-mode fracture

toughness in the mode Ι/mode ΙΙ range.  These tests include:  the edge-

delamination tension[3], the crack-lap shear[4], the Arcan[5], the asymmetric double

cantilever beam[6], the mixed-mode flexure[7], and the variable mixed-mode[8] test.

However, all of these tests have one or more problems which limit their usefulness.

The mixed-mode bending (MMB) test[9] seems to solve many of these problems.

The MMB test uses a lever to simultaneously apply DCB and ENF type loadings,

and by varying the lever length, practically any mode Ι/mode ΙΙ ratio can be

obtained.  In addition, the MMB test can be analyzed using simple beam theory

equations developed for the DCB and ENF tests, and this analysis can be used to

separate the mode Ι and mode ΙΙ components.  Furthermore, delamination growth

is stable for most MMB test configurations and the mixed-mode ratio stays

essentially constant during delamination growth.  However, when the MMB test was

used with a tough material such as APC2 (AS4/PEEK), rather large displacements
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were observed.  These large displacements caused geometric nonlinearities.  The

purpose of this paper is to analyze the geometric nonlinearities of the MMB test and

to introduce a redesigned MMB test apparatus that minimizes these nonlinearities.

An analysis was developed to account for the geometric nonlinearity of the

MMB loading apparatus and throughout this paper the term nonlinearity will refer to

geometric nonlinearity.  The analysis was used to calculate the load-displacement

response of MMB tests as well as the strain energy release rates.  Since it would

be inconvenient to use a nonlinear analysis to analyze MMB data, the MMB

apparatus was redesigned to reduce the nonlinearity.  The nonlinear analysis was

used to optimize the redesigned MMB apparatus.  This redesigned apparatus was

demonstrated by measuring the fracture toughness of APC2.  The results are

compared to a previous study which used the original apparatus.

LIST OF SYMBOLS

a Delamination length

b Specimen width

c Lever length
E11 Longitudinal modulus

E22 Transverse modulus

G Strain energy release rate
GT Total strain energy release rate

G 1 2  Shear modulus

h Specimen half-thickness
Ι Bending moment of inertia of specimen half-thickness

L Specimen half-span length

M Moment at delamination tip
          MA,MB Moment at the delamination tip due to loading at points A and 

   B, respectively.

P Load at a point
Pa Applied load

v Load-point height above specimen midplane
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x,y Coordinates in specimen reference system

X,Y Global coordinates
δ Load-point displacement

λ Elastic foundation parameter

φ Rotation of specimen cross section at a point

θΟ Rotation of specimen coordinate system

θL Rotation of lever

Superscripts

         A,B,C,D,F Value at points A, B, C, D, and F on the MMB apparatus
i Refers to the ith iteration

Subscripts

c Fracture toughness (critical strain energy release rate)

lin Value calculated using linear theory

nl Value calculated using nonlinear analysis

x,y,X,Y Value in the x, y, X, and Y direction, respectively

Ι, ΙΙ Mode Ι and Mode Ι component, respectively

MMB TEST PROCEDURE

The MMB apparatus used in previous studies is shown in figure 1.  Load is

applied to a split-beam specimen by means of a lever where the distance, c,

between the load-point and the fulcrum can be varied.  The mode Ι and mode ΙΙ

loadings are applied simultaneously to the split-beam specimen using this lever.

The downward load applied at the fulcrum of the lever produces a mode ΙΙ loading

similar to the ENF test.  The upward load at the end of the lever creates a mode Ι

loading similar to the DCB test.  By changing loading point on the lever, and

therefore the length  c,  the ratio of mode Ι to mode ΙΙ loading can be changed.

Load points were chosen to produce GΙ/GΙΙ ratios of 4/1, 1/1, and 1/4.  Tests were

also conducted under pure mode ΙΙ where the lever was loaded directly above the
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center roller resulting in 3 point bending and under pure mode Ι where the lever was

removed and the top hinge was pulled upward as in the DCB test.

The material used in this study was APC2, a tough thermoplastic composite

made of AS4 fibers in a PEEK (polyetheretherketone) matrix.  The longitudinal

modulus, E11, was measured in flexure to be 18.7 Msi using a 3-

point bend test with a 3 in. span length.  The transverse modulus, E22, and shear

modulus, G12, were found from the literature to be 1.46 Msi and 0.8 Msi,

respectively[9].

Unidirectional 24-ply test specimens were produced from two 6"x12"

panels.  The specimen length was 6 in.; the width, b, was 1 in.; and the nominal

thickness, h, was 0.12 in.  Each specimen contained a 0.5 mil thick Kapton

delamination starter which was 2.5 in. long and placed at one end of the specimen

between the 12th and 13th plies.  Hinges were bonded to the specimen as shown

in figure 1 so that the initial delamination length, a, was 1 in.  The half-span length, L,

of each test was 2 in.

Each specimen was precracked using a 4/1 mixed-mode ratio loading to a

delamination length of approximately 1.25 inches to be consistent with previous

tests[9].  Each specimen was then reloaded to produce delamination growth under

one of the mixed-mode or pure-mode conditions.  The specimens were loaded in

displacement control at a rate of 0.05 in/min at the lever loading point.  The maximum

load was used as the critical load in the calculation of fracture toughness, Gc.  The

delamination length, a, which was determined during the test by observing the edge

of the specimen through a 7x microscope, was also used in the calculation of Gc.

The edge of the specimen was coated with a white, water soluble typewriter

correction fluid to increase the visibility of the delamination.

The load-displacement response was measured during each fracture

toughness test.  The displacement measurements were taken from the crosshead
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position but were then corrected for the compliance of the load frame and the MMB

apparatus.  This compliance was measured using an extremely stiff specimen (3/8

inch steel) in the test apparatus.  This linear correction to the displacement

measurements was less than 6%.  A second correction was made to the

displacement measurements to correct for a small initial nonlinearity.  This nonlinearity,

which is believed to be caused by specimen seating, was corrected by subtracting

a small constant displacement (less than 2% of the maximum displacement).

SOURCES OF NONLINEARITY

In reference 9, a finite element analysis, and a modified beam theory analysis,

were shown to predict the load-displacement curve of the MMB test quite well at

low load levels where the curve is linear.  However, at higher loads required when

testing tough materials such as APC2, there is some nonlinearity evident in the load-

displacement curves before delamination onset.  This nonlinearity can be seen in

figure 2, which shows a load-displacement curve for an MMB test on an APC2

specimen with a 1/1 mixed-mode ratio.  The dimensions of the specimen were

chosen so that specimen nonlinearity would be negligible for either the DCB[10] or

ENF[11] tests.  Since the MMB test is simply a combination of these tests, the

specimen nonlinearity is small in this case as well.  Similarly, since material

nonlinearity was not observed in the pure mode tests, it should not be present in the

MMB test.  Therefore, most of this nonlinearity is believed to be caused by

geometric nonlinearity of the loading apparatus alone.  The APC2 specimen had a

nonlinear responce when loaded in the original MMB apparatus primarily because

the loading on the apparatus changed direction as the specimen deformed.  The

lever was loaded by a roller, and when the lever rotated as the system was loaded,

the loading direction changed so that it was always perpendicular to the lever as

seen in figure 1(b).
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ANALYSIS

To understand the effects of the geometric nonlinearity, a nonlinear analysis

was developed.  This analysis was used to calculate the strain energy release rate

and the displacement of the MMB test apparatus accounting for the nonlinearity of

the apparatus.  The analysis was also helpful in understanding more fully the causes

of the nonlinearity.  As a result, the analysis was used to optimize a redesigned

MMB apparatus which reduces the nonlinearity of the test.

The nonlinear analysis uses an iterative approach described by the flow chart

in figure 3.  The analysis is also explained in detail in the appendix.  The first step in

this analysis is to choose an applied load, Pa, and apply it to the initial position of the

lever.  To calculate fracture toughness, this applied load will be the critical load

measured during an MMB test.  This loading is then used to calculate the initial

loading which would exist on the undeformed specimen.  This specimen loading is

used with linear beam theory to calculate the deformed shape of the specimen.  The

deformation of the specimen causes the lever to rotate and displace and its new

position is calculated.  The rotation of the lever causes a horizontal component of

applied load to develop due to the roller loading which always bears perpendicular

to the lever surface.  The loading on the specimen is recalculated using the new lever

loading and position.  The next iteration is begun by recalculating the deformed

shaped of the specimen from the specimen loading.  The iterative process is

repeated until the change in the lever rotation from one iteration to the next is

negligible.  Once the analysis converges, the mode Ι and mode ΙΙ strain energy

release rate can be calculated from the loading on the specimen.  Because of the

iterative nature of this analysis, a computer program was created to perform the

calculations.
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The mode Ι and mode ΙΙ components of G for split-beam specimens have

been related to the moments applied to the crack tip region[12].  For a specimen with

arms of equal thickness, the G equations presented in reference 12 reduce to

GI( )
nl
=
MI

2

bE 11I
(1)

GII( )
nl
=

3MII
2

4bE 11I
(2)

where MΙ and MΙΙ are the moments symmetrically and antisymmetrically applied to

the two arms of the split-beam specimen, respectively.  In the present study, these

moments are calculated using the nonlinear analysis described in the appendix and

correspond to mode Ι and mode ΙΙ loading.

The G equations were modified[9] to account for rotations about the crack

tip[13] and shear deformation[11,14] as has been done for the pure mode tests.
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The terms PΙ and PΙΙ correspond to the loading that would be applied to the

specimen to obtain a pure mode Ι (DCB) or a pure mode ΙΙ (ENF) test.  The

calculation of these terms is described in the appendix.

The linear analysis developed in reference 9 is used to compare with the

nonlinear analysis.  This analysis assumes that there is no change in loading due to

specimen deformation, and the calculation of G is therefore much simpler.
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ANALYSIS RESULTS

The nonlinear analysis was evaluated by comparing calculated and measured

load-displacement curves.  Next, the analysis was used to investigate the effect of

the nonlinearity on G.  The errors due to ignoring the nonlinearity were calculated.

The MMB apparatus was redesigned to minimize the nonlinearity.

Figure 4 shows measured load-displacement curves compared to the

calculated curves from the linear beam theory analysis and the nonlinear analysis.

There is nonlinearity throughout the mixed-mode range studied.  The nonlinearity is

much more pronounced where there is a substantial mode ΙΙ component.  The
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nonlinear analysis accurately predicts the load displacement response of the MMB

test up to load levels where the delamination would begin to extend.

The excellent agreement of the analysis calculations with measured

displacements indicates that the analysis should also accurately calculate the strain

energy release rate of the MMB specimen.  However, it is much simpler to

determine G with the linear analysis than with the nonlinear analysis.  The error in G

caused by ignoring the nonlinearity was examined.  First, the load required to extend

a delamination was calculated for a material with a Gc  of 10 in-lb/in2 .  This value was

chosen to represent a material such as APC2.  This calculated critical load was used

to calculate the mode Ι and mode ΙΙ strain energy release rates using both linear and

nonlinear analyses.  The results of the two analyses were compared to determine

the errors due to nonlinearity.  These errors were calculated using the following

equations.

 

G
Ι
Error =

G Ι( )
lin
− G Ι( )

nl

G
T( )

nl

× 100 (7)

G
ΙΙ

Error =

G ΙΙ( )
lin
− G ΙΙ( )

nl

G
T( )

nl

× 100 (8)

Notice that the errors in equations 7 and 8 are expressed as a percentage of the

total strain energy release rate, (GT)nl, where (GT)nl = (GΙ)nl + (GΙΙ)nl.  Figure 5

shows these nonlinearity errors versus delamination length.  The errors in calculating

G could be as large as 30% which is unacceptable.

 As previously mentioned, the nonlinearity was primarily due to the change in

the direction of the applied lever load.  The applied load, which was initially vertical,

developed a horizontal component as the lever rotated as seen in figure 1.  This

horizontal force created a substantial moment about the upper hinge pin because
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the lever was 2.9 inches above the specimen mid-plane.  Since the moment

caused by the horizontal load is in the opposite direction to the moment created by

the vertical applied load, it causes a reduction in G.  The G calculated using the linear

analysis is erroneously high because it does not account for this horizontal lever load.

The effect of the moment is much more pronounced for the mode Ι component, thus

causing the mode Ι error to be larger than the mode ΙΙ error for each mixed-mode

case as shown in figure 5.  The largest error is for the 1/1 mixed-mode ratio.

REDESIGN OF THE MMB APPARATUS

Because it would be inconvenient to use a nonlinear analysis to analyze

MMB data, the MMB apparatus was redesigned to minimize the nonlinearity so that

a linear analysis could be used.  The obvious solution to the nonlinearity problem is

to eliminate the horizontal force which develops on the lever as it rotates.  The

horizontal force can be eliminated by simply attaching the roller to the lever and

loading the roller with a horizontal surface attached to the load machine.  Since the

surface on which the roller bears no longer rotates, the reaction on the lever will

remain vertical.

However, when the roller is attached to the lever, it moves horizontally as the

lever rotates about the hinge pin.  This causes the horizontal distance from the hinge

to change, as shown by ∆c in figure 6(a).  The changing load location changes the

moment about the hinge pin, causing a geometric nonlinearity.  This effect is reduced

as the height of the roller above the specimen midplane is reduced, as shown in

figure 6(b).  Figure 7 shows how the errors due to this nonlinearity change with roller

height.  At a load-point height, v, of 0.6 inches the nonlinearity error is approximately

+2%.  Therefore, with this redesigned MMB apparatus, a linear analysis can be

used to analyze the test data and the nonlinearity error will be small.   These results

were calculated for a toughness of Gc=10 in-lb/in2 with the graphite/PEEK test
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specimen described earlier.  The results are also valid for tests on other materials

such as glass/epoxy having a different modulus, provided the specimens have a

comparable bending stiffness (E11Ι).

The design of the test fixture, with the roller attached to the lever at a load-

point height of 0.6 inches, required a saddle-like device so that the lever did not

contact the specimen during loading.  The saddle extends down on both sides of

the lever and the test specimen, as shown in figure 8.  The saddle holds one bearing

on each side of the lever such that the top of the bearing is at 0.6 inches above the

mid-plane of the specimen.  The apparatus is loaded with a yoke which contacts the

rollers without touching the lever.  To change the lever length and therefore the

mixed-mode ratio, the saddle can be moved on the lever.

Figure 9 shows load-displacement curves measured with the redesigned

apparatus when the lever lengths were set to produce the 4/1, 1/1, and 1/4 mixed-

mode conditions.  These experimentally measured curves agree closely with the

linear analysis calculations.  The redesigned MMB apparatus has significantly less

nonlinearity.

The reduction in nonlinearity can also be seen in figure 10 where percent error

in G from equations 7 and 8 is plotted versus delamination length.  From this figure, it

can be seen that for a material as tough as APC2 the error is less than + 3% as the

delamination grows over the test region. 

The errors due to nonlinearity with a graphite reinforced composite specimen

having a 1.75 in. delamination length loaded by the redesigned MMB apparatus are

plotted versus delamination fracture toughness in figure 11.  The figure shows that

nonlinearity error will be less than about +3% for materials with Gc as high as 20 in-

lb/in2.  Therefore, the nonlinearity errors will be acceptably small even for materials

twice as tough as APC2 provided the bending stiffness of the specimens is

comparable to that used in this study.
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EXPERIMENTAL RESULTS

The APC2 toughness testing in reference 9 was conducted with the original

MMB apparatus and a linear analysis.  Results from reference 9 are shown as open

circles in figure 12.  These data points are slightly different from those presented in

reference 9 because the critical load was redefined to be the maximum load from the

load-displacement curve instead of the load where the slope changes abruptly.

Only minor shifts in the data resulted and the data are now comparable to those from

the present study.  The results from reference 9 were also reanalyzed using the

nonlinear analysis and are shown as filled circles and by the dashed line in figure 12.

Notice that the GΙ/GΙΙ ratios have changed and that all the G values calculated using

the nonlinear analysis are lower than the linear values.  These differences should be

expected from the errors presented in figure 5.  Notice that the effects of nonlinearity

are most pronounced on the mode Ι component in the middle of the mixed-mode

range, as discussed earlier.

The mixed-mode fracture toughness of APC2 was also measured with the

redesigned apparatus.  A typical load-displacement curve from one of these tests is

shown in figure 13.  The curve is nearly linear up to the region near the maximum

load point.  The deviation from linearity in this region is believed due to damage

occurring at the delamination tip and not to apparatus nonlinearities.  The maximum

load was used as the critical value in calculating fracture toughness which is consistent

with the results from the previous study.

The toughness measurements made with the redesigned apparatus and the

linear analysis are presented in figure 12 as open squares and a dash-dot line.

These results should agree with the data from the previous study, but as shown in

this figure, the redesigned data (dash-dot line) lie below those from the original

apparatus (dashed line).  This discrepancy is believed to be due to material
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differences.  Note that the average GΙc changed from 7.2 in-lb/in2 for the previous

study to 5.5 in-lb/in2 for the present study even though the mode I, DCB test and

the analysis were identical for the two studies.   Furthermore, the flexural modulus

changed from 16.8 Msi for the previous study to 18.7 Msi in the present study.

Since GIc and GIIc are inversely related to the modulus as seen in equations 5 and

6,  this change in modulus may also contribute to the discrepancy in toughness

between the two studies.  These material differences can probably be attributed to

processing[15,16].  Since the data from both studies can be modeled with straight

lines that have similar slopes, the fracture toughness measurements from the

redesigned MMB apparatus and a simple linear analysis are believed to be

accurate.  The linear curve fit agrees with the following failure criterion suggested in

references 17 and 18.

G Ι

G
Ιc

+
G ΙΙ

G
ΙΙc

= 1 (9)

 CONCLUDING REMARKS

The MMB test uses a lever to simultaneously apply mode Ι and mode ΙΙ

loading to a split-beam specimen.  Rotations of the lever were found to produce

geometric nonlinearities in the load displacement response of the MMB apparatus.

An analysis of these geometric nonlinearities accurately predicted the load-

displacement response of the apparatus.  The analysis showed that the nonlinearity

had a large effect on the measured delamination fracture toughness of tough

materials calculated using linear beam theory.

The MMB loading apparatus was redesigned to virtually eliminate the

nonlinearities. A complex nonlinear analysis is therefore no longer needed to analyze

MMB data.  The analysis showed that an optimum design is achieved when the

MMB loading was applied through a roller which is attached to the lever so that the
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roller contact height is 0.6 inches above the specimen mid-plane.  With the

redesigned loading apparatus, the errors due to the nonlinearity are less than + 3%

for the APC2 specimen used in this study, and hence, can be ignored.  Similarly

small errors should be expected for other materials provided the specimen bending

stiffness is comparable to that used in the present study.

The delamination fracture toughness of APC2, was measured with the

redesigned apparatus and compared to results found earlier using the original

apparatus.  After the previous data were reanalyzed using the nonlinear analysis,

they were similar to the data from the redesigned MMB apparatus analyzed with the

linear analysis.  The difference in toughness between the previous study and the

present study was attributed to manufacturing differences in the material.  Therefore,

using the redesigned MMB apparatus, delamination fracture toughness can be

calculated from test data using a simple linear beam theory analysis.
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 APPENDIX A

NONLINEAR ANALYSIS OF MMB APPARATUS

To determine the effect of the geometric nonlinear response of the MMB

apparatus, a nonlinear analysis was developed.  This analysis was first developed

for the original MMB apparatus and then extended to the redesigned MMB

apparatus.  The analysis uses an iterative approach to calculate the displacement

and strain energy release rate of the MMB specimen accounting for the change in

loading due to the apparatus deflection.  The procedure used in this analysis is

outlined by the flow chart in figure 3.  In this procedure, first the initial loading on the

lever and specimen are calculated.  With this loading, the deformation of the

specimen is found using linear beam theory.  The deformation of the specimen

causes the lever to rotate.  With the original MMB apparatus, the lever was loaded

by a roller so the applied force was always normal to the lever.  Therefore as the

lever rotated, a horizontal component of force developed on the lever as seen in

figure 1(b).  The new position of the lever is therefore calculated from the specimen

deformation so that the loading on the lever can be determined. The new lever

loading is then used to recalculate the loading on the test specimen.  At this point, the

convergence of the solution is checked.  If the rotation of the lever has changed

significantly since the last iteration, then the next iteration is begun by calculating the

specimen deformation from the loading on the specimen.  If the rotation of the lever

has not changed significantly, then the solution has converged and the loading is

used to calculate the mode Ι and mode ΙΙ strain energy release rates.  This

appendix first describes in detail how each step of the analysis was performed for

the original MMB apparatus and then briefly describes how the analysis was

extended to the redesigned MMB apparatus.
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Original MMB Apparatus

Initial loading.- Initially the lever is horizontal and the applied loading Pa on

the beam is therefore vertical and directed downward.  Since the specimen is initially

undeformed, the loading on the specimen shown in figure A1(a) can be calculated.

P y
A
= Pa

c
L


P y

B
= Pa

L − c
2L







P y

C
= − Pa

c + L
L





 (A1)

P y

D
= Pa

L + c
2L







Px
A
= Px

B
= P x

C
= P x

D
= 0

The superscripts on load, P, indicate points on the specimen and the subscripts

indicate the component of load.  A mode Ι load, PΙ, and a mode ΙΙ load, PΙΙ, are also

calculated.  These loads are used in corrections to linear beam theory which were

developed for the mode Ι, DCB test and the mode ΙΙ, ENF test, respectively.

P Ι =
P y

A
− P y

B

2

P ΙΙ = − P y
C

(A2)

Specimen deformation.- The specimen deformation, calculated using linear

beam theory, is expressed in terms of a coordinate system at the delamination tip

(point O).  This coordinate system was chosen because it simplifies the description

of the specimen deformation.  This specimen coordinate system (x,y) moves and

rotates with respect to the global coordinate system (X,Y) which will be described

later.  For each point of interest, the vertical and horizontal location as well as the

slope of the deformed beam (Y, X, and φ, respectively) are calculated using

equations A3.  Here, the simple beam theory deformation has been corrected for
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shear deformation[11,14] and displacement due to rotation at the delamination

tip[13].  The rotation at the delamination tip is found using a beam on an elastic

foundation correction.  This correction is similar to that used with the DCB test and the

mode ΙΙ loading is used in this correction.  The points of interest on the beam are not

located at the specimen midplane so the vertical locations were corrected for this

initial offset.  Points A and B are located at the center of the bonded hinge pin and

points C and D are located at the specimen surface.  The axial displacements of the

specimen are small and therefore neglected, so the only corrections made to the

horizontal locations are for the rotation of the specimen cross section when the

additional height of the hinge, h*, might make this correction significant.
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Beam Theory Elastic Foundation and
Shear Correction

Hinge Height and
 Beam Thickness

 Corrections

yA =
P y

A
a 3

3E
11
Ι

+
P Ιa

3

3E
11
Ι

3
λa

+
3

λa( )
2








+

12P y
A

10bhG

+ h + h*

xA = a − φ
A h

2
+ h*





φ
A
=

P y
A

a2

2E
11
Ι

+
P Ιa

2

3E
11
Ι

3
λa

+
3

λa( )
2








+

12P
A

10bhG

yB =
P y

B
a3

3E
11
Ι

+
P Ιa

3

3E
11
Ι

3
λa

+
3

λa( )
2








+

12P y
B

10bhG

− h + h*( )

xB = a + φ
B h

2
+ h*





φ
B
=

P y
B

a2

2E
11
Ι

+
P Ιa

2

3E
11
Ι

3
λa

+
3

λa( )
2








+

12P
B

10bhG
                       (A3)

y
C
=

P y
C

L − a( )
3

24E
11
Ι

+
P y

D
L − a( )

2
5L − 2a( )

48E
11
Ι

+
12 P y

C
+ P y

D



 L − a( )

20bhG
12

+ h

xC = a − L

φ
C
=
− P y

C
L − a( )

2

16E
11
Ι

−
P y

D
L − a( ) 3L − a( )

16E
11
Ι

−
12 P y

C
+ P y

D





20bhG
12
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D
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P y
C

L − a( )
2

5L − 2a( )

48E
11
Ι

+
P y

D
2L − a( )

3

24E
11
Ι

+
12P y

D
2L − a( )

20bhG
12

+
12P y

C
L − a( )

20bhG
12

− h
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Lever position and loading.- The loading on the lever changed as the

specimen deforms and caused the lever position to change.  The position of the

lever must be determined relative to the load frame.  Therefore, a global coordinate

system (X,Y) is set up which is located at point B as shown on in figure A1(b).  The

angle between the specimen coordinate system and the global system is θO.

θ
O
= − tan −1 yB + h*− yD

2L





 (A4)

This was calculated by rotating the deformed shape of the specimen so that its left

end (point D) remains in contact with the roller, as shown in figure A1.  The location of

the specimen coordinate system is described by locating its origin, point O, in the

global reference system.

X
O
= − xB cos θ

O
+ yB sin θ

O (A5)

Y
O
= − xB sin θ

O
− yB cos θ

O

The angle of the lever, θL, with respect to the global reference system is

calculated by rotating the lever so that the center roller remains in contact with the

specimen surface.

θ
L
= θ

O
+ tan −1 yA − h*− yC

L





 (A6)

To determine the location of the load point, the location of point A where the

lever is attached to the beam must be determined in the global system.

X
A
= xA − xB( )cos θ

O
− yA − yB( )sin θ

O (A7)

Y
A
= xA − xB( )sin θ

O
+ yA − yB( )cos θ

O
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The location of the load point F does not change in the X direction.  The vertical

location is found from the displacement at point A plus the rotation of the lever.

X
F
= − L + c( )        (A8)

Y
F
= Y

A
+ (v − h − h*)cos θ

L
− X

A
− X

F
− v − h − h*( )sin θ

L
  tan θ

L

The displacement measured during an MMB test corresponds to the change in the

vertical displacement of point F.

δ = v + h + h*− Y
F

(A9)

The loading on the lever is calculated using equations A10.  The first equation

results since the test machine only measures the vertical component of load and it

was applied in the negative Y direction.  The second equation results because the

load was applied through a roller and therefore, was always perpendicular to the

lever surface.

P
Y

F
= − P a    (A10)

P
X

F
= − P

Y

F
tan θ

L

Recalculate specimen loading.- To calculate the loading on the specimen,

the loads applied to the lever and the location of point F must be determined in the

specimen coordinate system.
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xF = X
F
− X

O( )cos θ
O
+ Y

F
− Y

O( )sin θ
O

yF = − X
F
− X

O( )sin θ
O
+ Y

F
− Y

O( )cos θ
O (A11)

Px
F
= P

X

F
cos θ

O
+ P

Y

F
sin θ

O

P y
F
= − P

X

F
sin θ

O
+ P

Y

F
cos θ

O

These applied loads are equilibrated by reactions at the roller and the hinge,

points C and A, respectively.  The loads applied to the specimen are equal and

opposite to the reactions on the lever.  The loading at point C was through a roller so

it was always perpendicular to the specimen surface.

P y
C
=

P y
F

xF − xA( ) − Px
F

yF − yA( )

xC − xA( ) + φ
C

yC − yA( )
Px

C
= − φ

C
P y

C

(A12)

P y
A
= P y

F
− P y

C

Px
A
= Px

F
− Px

C

The loading at points C and A are equilibrated by reactions at points B and D.

The reaction at point D is also through a roller so it will be perpendicular to the

specimen surface.

P y
D
=

− P y
C

xC − xB( ) + Px
C

yC − yB( ) − P y
A

xA − xB( ) + Px
A

yA − yB( )

xD − xB( ) + φD
yD − yB( )

Px
D
= − φ

D
P y

D

(A13)

P y
B
= − P y

D
− P y

C
− P y

A

Px
B
= − P x

D
− P x

C
− P x

A

The mode Ι and mode ΙΙ loading should be recalculated at this point using the

recalculated specimen loads and equation A2.
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Convergence Test.- The specimen loads are used in the next iteration to

calculate specimen deformation and therefore new specimen loads.  This iterative

process is continued until it converges.  The test for convergence is based on the

rotation of the lever.

θ
L

i
− θ

L

i−1
≤ 0.000001 (A14)

where i indicates the present iteration and i-1 indicates the previous iteration.  Once

the lever rotation has converged, the G from the nonlinear analysis can be calculated

using the converged values of load and position.  Also, the converged value of

displacement along with the chosen load, Pa, can be used as the a point on a load-

displacement curve for the split beam specimen in the MMB apparatus.  To create a

load-displacement curve, many values of Pa are used in this analysis.

 Strain energy release rate.-The G of a split-beam type specimen can be

related to the moments at the delamination tip.  The moments at the delamination tip

in the top half of the split-beam specimen, MA, is due to the specimen loading at

point A.  Similarly, the moment in the bottom half of the beam, MB, is due to loading

at point B.

M
A
= P y

A
xA − P x

A
yA

(A15)

M
B
= P y

B
xB − P x

B
yB

These moments can be divided into their symmetric (mode Ι) and antisymmetric

(mode ΙΙ) components.

M
Ι
=

M
A
− M

B
2 (A16)

M
ΙΙ
=

M
A
+ M

B
2



27

These moments are then used in to calculate the mode Ι and mode ΙΙ strain

energy release rates.  The shear corrections to G involve the mode Ι and mode ΙΙ

loading which are comparable to the applied loading of a DCB test and an ENF test,

respectively.

G
Ι( )

nl
=

M
Ι

2

bE
11
Ι

1+ 2
λa

+ 1

λa( )
2








+

6 P
Ι( )

2

5b
2
G

12
h

(A17)

G
ΙΙ( )

nl
=

3M
ΙΙ

2

4bE
11
Ι
+

9 P
ΙΙ( )

2

80b
2
G

12
h

Redesigned MMB Apparatus

The nonlinear analysis of the MMB apparatus after its redesign is performed in

the same manner as before.  However, the location of point F and applied load are

different.  Because the roller is now attached to the lever, it moves with the lever and

the location of the applied load is given by

X
F
= X

A
− L + c( )cos θ

L
− V − h − h*( )sin θ

L (A18)

Y
F
= Y

A
− L + c( )sin θ

L
+ V − h − h*( )cos θ

L

Since the roller bears on a horizontal surface attached to the load frame, the

applied load remains vertical.

P
Y

F
= − Pa (A19)

P
X

F
= 0

Therefore to analyze the redesigned apparatus, equations A18 and A19 are

substituted for equations A8 and A10, respectively.



Figure 1.- Original mixed-mode bending test apparatus.
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Figure  2.- Nonlinear response of an APC2 split beam specimen 
                    in the original MMB apparatus.
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Figure 6.- Effect of lever height on load point translation.
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Figure 8.- Redesigned MMB apparatus
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Figure 10.- Error in G calculation for the redesigned MMB test.
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